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A spatially adaptive linear space-time �nite element solution
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SUMMARY

A linear solution strategy for the �nite element simulation of incompressible �uid �ows with moving
domains is outlined in the context of a fully Lagrangian space-time GLS formulation using low-order
elements. This linear solution strategy is achieved by assuming that the incompressibility condition is
enforced although it is relaxed in the GLS formulation. The approach has a distinct advantage over the
non-linear Newton–Raphson solution approach in a sense that it can not only signi�cantly reduce the
computing costs in terms of computer CPU time and memory requirements but also preserve the solution
accuracy if a su�ciently small time-step size is applied. Its applicability is further demonstrated through
a wave propagation and breaking problem. For this type of problems, adaptive re-meshing techniques are
essential to achieve a successful simulation. A mesh adaptive procedure developed earlier for simulation
of large deformation solid mechanics problems is appropriately modi�ed and employed in simulation
of �ows of incompressible �uids with moving domains. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Considerable attention has been paid to the numerical simulation of �uid �ow problems
involving changing spatial domains due to their great practical importance. In the last decade
or so, the space-time Galerkin=least-squares (GLS) �nite element method has been established
as a general numerical approach to solve a wide variety of incompressible �uid �ow problems
including moving domains and free surfaces [1–6]. The main feature of the method is that
the corresponding variational formulation employs the time-discontinuous Galerkin method
and includes least-squares terms, which involve residual of the Euler–Lagrangian equations
evaluated over element interiors, to stabilize the formulation. This stabilization nature of the
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formulation not only prevents numerical oscillation for incompressible �ows using equal-order
interpolation functions for velocity and pressure without enforcing the incompressibility con-
straint condition, but also preserves the consistency of the standard Galerkin method. It should
be observed that the total volume change occurred in the numerical simulation depends on
the choice of the values of the stabilization parameters involved and hence their values must
be speci�ed with care.
In our previous work [7], two solution strategies and a time adaptive scheme are proposed

for the solution of incompressible Lagrangian �uid �ow problems by employing the space-
time Galerkin=least-squares method using low-order �nite elements in both spatial and time
domains. In particular, a linear solution procedure is suggested and numerically veri�ed by
several examples. This linear approach has a distinct advantage over the non-linear Newton–
Raphson solution approach in a sense that it can not only signi�cantly reduce the computing
costs in terms of computer CPU time and memory requirements but also preserve the solution
accuracy if a su�ciently small time-step size is applied.
In this paper, this linear solution strategy is highlighted and its applicability to a problem

with moving domain is further demonstrated. In addition, an adaptive re-meshing technique,
which is essential to achieve a successful simulation of the problem considered, is described.

2. SPACE-TIME GLS FINITE ELEMENT FORMULATION

2.1. Governing equations

Consider an incompressible viscous �ow occupied a time-dependent spatial domain �(t)∈Rndim ,
where ndim is the number of space dimensions, with boundary �(t). The �ow is governed by
the following set of equations with velocity u(x; t) and pressure p(x; t) as primary variables:

Momentum equation: �
(
@u
@t
+ u · ∇u

)
−∇ · �= f on �(t); ∀t ∈ [0; T ]

Incompressibility condition: ∇ · u=0 on �(t); ∀t ∈ [0; T ]
Boundary conditions: u= g on �g(t);

� · n= h on �h(t);

Initial condition: u(x; 0)= u0 on �(0);

(1)

where � is the density of the �uid, g and h are given functions and n is the unit outward
normal vector of the boundary. The strain rate and stress tensors, U(u) and �, are respectively
de�ned as

U(u) = 1
2
(∇u+ (∇u)t) (2)

�(p; u) =−pI+ 2�U(u) (3)

where � is the viscosity of the �uid and I is the identity tensor.
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As the problem with a changing domain is considered, the motion of the boundary is
unknown in advance and thus the geometry of the domain �(t) is a part of the problem
solution to be considered.

2.2. Variational formulation

Assume that the initial domain of the problem concerned is spatially discretized into ele-
ments �e0 and the time interval [0; T ] is also partitioned into subintervals In=[tn; tn+1]. With
�n=�(tn) and �n=�(tn), the space-time stab Qn is de�ned as the domain enclosed by the
surfaces �n;�n+1 and Bn, where Bn is the surface described by the boundary �(t) as t traverses
In.
Suppose that Sn; (Sp)n;Vn and (Vp)n are all properly de�ned function spaces (see e.g.

Reference [3] for their de�nitions) and let u±n be de�ned as

u±n = lim�→0
u(tn ± �)

The variational formulation for the space-time Galerkin=least-squares (omitting the boundary
related terms) can then be expressed as follows: given u−n , �nd un ∈Sn and pn ∈ (Sp)n such
that ∀w∈Vn and ∀q∈ (Vp)n

∫
Qn
w ·

[
�
(
@un
@t
+ un · ∇un

)
−f

]
dQ +

∫
Qn
U(w) : �(pn; un) dQ +

∫
Qn
q∇ · un dQ

+
nel∑
e=1

∫
Qen

�1

[
�
(
@w
@t
+ un · ∇w

)
− �(q;w)

]
·
[
�
(
@un
@t
+ un · ∇un

)
− �(pn; un)− f

]
dQ

+
nel∑
e=1

∫
Qen

��2∇ ·w∇ · un dQ +
∫
�n
w+ ·�(u+n − u−n ) d�=0 (4)

where nel is the total number of elements; and �1 and �2 are two stabilization parameters
[3, 4, 6]. The process is applied sequentially to all space-time slabs Q1; Q2; : : : ; QN , starting
with u−1 = u0.

2.3. A fully Lagrangian �nite element formulation

In the present work, a fully Lagrangian formulation is adopted to describe the motion of �uid
�ows, together with the use of low-order elements. For a fully Lagrangian description, the
mesh will move with the �uid particles. A low-order element considered involves the shape
functions which are piecewise linear in space but constant in time.
Under these assumptions, the formulation (4) can be much simpli�ed and the following

system of F.E. equations at each space-time slab Qn can be derived:[
M+K CT

C −Mp

][
U

P

]
=

[
Fu

Fp

]
(5)
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where

Kij=
∫
Qn
2�U(Ni) : U(Nj) dQ +

∫
Qn
��2(∇ ·Ni) · (∇ ·Nj) dQ

Mij=
∫
�n
�Ni ·Nj d� Cij= −

∫
Qn
Ni∇ ·Nj d� Mpij =

∫
Qn
�1∇Ni · ∇Nj dQ

Fui=
∫
Qn
fNi d� +

∫
Qn
�un−1Ni dQ Fpi= −

∫
Qn
�1f · ∇Ni dQ

in which Ni denotes the shape function of node i for both velocity and pressure, and Ni=
[Ni; : : : ; Ni]Tndim×1. Due to the dependency of Qn on the velocity to be determined, the above
equation is essentially a non-linear algebraic system of equations that should be solved itera-
tively, typically by the Newton–Raphson scheme.
In order to obtain the quadratic rate of asymptotic convergent of the Newton–Raphson it-

erations, an exact linearization of equations (5) has been achieved in Reference [7]. With a
reasonable small time step, our experience shows that generally 2–3 Newton–Raphson itera-
tions are required at each time step for a wide variety of problems.

3. LINEAR SOLUTION APPROACH

By de�ning a �xed known space-time domain �Qn ∈ Rndim × In as the reference con�guration,
the integration over the domain Qn in (5) can be rewritten as∫

Qn
(·) dQ=

∫
�Qn

(·) Jn(^; �) d �Q=
∫ �tn

0

∫
�n
(·)Jn(^; �) d�d�^ (6)

where Jn is the Jacobian which measures the spatial volume transformation ratio from the
reference domain to the corresponding physical domain and is a non-linear function of nodal
velocities un; ^ are the spatial co-ordinates de�ned in �Qn, and � is the local time co-ordinate
in the interval [tn; tn+1]. With this integral domain transformation, the source of non-linearity
of the equation is transferred from Qn to Jn.
By exploiting the fact that in each element domain, �en, the corresponding Jacobian J

e
n is

only a function of local time co-ordinate �, expression (6) can be further reduced to∫
Qn
(·) dQ=

nel∑
e=1

∫ �tn

0
J en (�)

∫
�en

(·) d�d� (7)

which indicates that J en is integrated over the time domain and is separated from the spatial
part.
In an ideal incompressible situation where incompressible condition is fully enforced, Jn,

or J en must be equal to 1. In this case, if the integral function (·) is only dependent on the
spatial domain, expression (7) becomes∫

Qn
(·) dQ=�tn

nel∑
e=1

∫
�en

(·) d�=�tn
∫
�n
(·) d� (8)
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which indicates that the non-linearity has completely disappeared. However, as the incom-
pressible constraint is relaxed in the present situation, Jn must be present in the formulation.
Nevertheless, it is reasonable to expect that Jn may be su�ciently close to 1 if an acceptable
level of solution accuracy can be achieved at each time instant.
This observation motivates a possibility to derive an approximate solution scheme by ex-

plicitly setting J to be 1 in the formulation. Consequently, by assuming that the body force f
is not time-dependent, together with the fact that the shape functions N are only the function
of (reference) spatial co-ordinations ^, Equation (5) can be rewritten as


M=�tn + �K �C

T

�C �Mp



[
U

P

]
=

[ �Fu
�Fp

]
(9)

where M is given in (5) and

�Kij =
∫
�n
2�U(Ni) : U(Nj) d� +

∫
�n
�2(∇ ·Ni) · (∇ ·Nj) d�

�Cij =−
∫
�n
Ni∇ ·Nj d� �Mpij =

∫
�n
�1∇Ni · ∇Nj d�

�Fui =
∫
�n
fNi d� +

∫
�n
�un−1Ni d� �Fpi= −

∫
�n
�1f · ∇Ni d�

Clearly this system of equations is linear. Therefore at each slab only a linear Stokes-like
problem needs to be solved. Consequently the computational costs can be reduced by 2–3
times in comparison with the Newton–Raphson non-linear scheme. In addition, the sti	ness
matrix will become symmetric and this feature can further reduce the costs. Such a scheme
may be identi�ed as a forward Euler procedure, which may impose a condition on the time-
step size. However, as the time-step size is usually required to be su�ciently small in order
to achieve a reasonable solution accuracy, no stability problem has been observed in our
numerical experience.

4. MESH ADAPTIVITY

Numerical simulation of �uid �ows involving moving domains is often characterized by the
substantial deformation. Without an appropriate scheme to handle the deformation of the mesh,
the solution procedure will very rapidly run into di�culty due to severe element distortion or
even element tangling. Therefore, the introduction of spatially adaptive remeshing processes
is crucial for the successful solution of such engineering problems. Another objective of
employing an adaptive re-meshing is to optimize the element distribution according to the
feature of the intermediate solution in order to achieve a targeted solution accuracy with a
minimal number of elements.
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As a fully Lagrangian description for �uid �ow is adopted, the relatively matured mesh
adaptivity technique developed for modelling large deformation problems in solid mechanics
can be employed without any fundamental modi�cations. In the present work a mesh-size
indicator based on the total strain rate is employed. An unstructured advancing front technique
is used for the mesh generation and subsequent mesh adaptation, which allows a relatively
simple control of the mesh density and geometric recovery of the deformed surfaces. Details
can be found, for instance, in References [8, 9].

5. NUMERICAL ILLUSTRATION

The applicability of the above linear solution strategy, together with the mesh adaptivity tech-
nique is illustrated by a wave propagation and breaking problem [10]. The initial geometry of
the problem is shown in Figure 1, with L=100m; H =10m; d=5m; d1 = 2m; d2 = 0:857m.
The slope of the shoaling bottom is taken to be 1

14 . The initial surface elevation, velocities
and pressure of the wave are determined by Laitone’s solution for a solitary wave of �-
nite amplitude propagating without change of shape [11]. The wave crest is located at a
distance of L=2 from the left end. A stick boundary condition is assumed for the shoaling
bottom. Water is assumed viscous with a viscosity of �=1:01 × 10−3 Ns=m2 and a density
of �=1000 kg=m3. The acceleration of gravity is set to be 9:8m=s2. Two stabilization param-
eters, �1 and �2, in the formulation (9) are chosen to be 10−11 and 1, respectively. A very
small value of �1 ensures that the volume change in the simulation remains at a very low
level.
Figures 2(a)–2(d) illustrate the deformed and adapted �nite element con�gurations of the

wave at 4 di	erent time instants, while Figures 3(a)–3(d) show the corresponding velocity
distributions in the horizontal direction. Di	erent time steps are tested and the main di	erence
appears in the form of a slight di	erence in the time instant at which the wave is breaking. A
smaller step size leads to a slightly shorter time. This is mainly due to the numerical damping
associated with the time integration scheme employed. Re�ning the mesh has a similar e	ect.
For �t=10−3 with the meshes shown in the �gures, the breaking time is 9:65s, which closely
matches the result of 9:9 s obtained in Reference [10]. The simulation is also conducted by
employing the non-linear Newton–Raphson procedure and the di	erence in results from the
described linear procedure is negligible (less than 0.1%). The time adaptivity as described
in Reference [7] is not adopted in this case. It is noted that the current solution procedure
requires further developments in order to allow modelling of surface merging after the wave
breaking.

Figure 1. Initial geometry of the wave propagation and breaking problem.
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Figure 2. Adapted deformed con�gurations at 4 di	erent time instants: (a) t=0:0 s;
(b) t=4:0 s; (c) t=8:0 s; (d) t=9:65 s.

Figure 3. Horizontal velocity distributions at 4 di	erent time instants: (a) t=0:0 s;
(b) t=4:0 s; (c) t=8:0 s; (d) t=9:65 s.

6. CONCLUSIONS

A linear solution strategy for the �nite element simulation of incompressible �uid �ows with
moving domains is outlined in the context of a fully Lagrangian space-time GLS formulation
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using low-order elements. Its applicability is demonstrated for a wave propagation and break-
ing problem. It has been demonstrated that for this type of problems adaptive re-meshing
techniques are essential to achieve a successful simulation.
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